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Spreading of a solid-on-solid drop
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We study the spreading of the foot of a two-dimensional drop via Monte Carlo simulations without
conservation law. The profile, or height of the spreading phase as a function of the distance from the ini-
tial drop, is described by a solid-on-solid model. For positive spreading coefficients, we find a precursor
film extending linearly with time, and thickening as ¢!/ due to entropic repulsion. For a vanishing

spreading coefficient, i.e., at the wetting transition, the foot of the profile is found to scale as

t'/2 parallel

and perpendicular to the substrate, with no precursor asymptote. For partial wetting, relaxation is
checked against exact results including finite-size effects.

PACS number(s): 68.10.Gw, 05.50.+q

Spreading of liquids on solids has been a very active
field of research rather recently. Beautiful experiments
have been performed [1-5], showing in some cases a pre-
cursor film of molecular thickness and length proportion-
alto Vz. Several attempts have been made to understand
this behavior. Up to how, however, the only model that
seems to capture the experimental data was based on hy-
drodynamics at a molecular level [6].

Relaxation to equilibrium of model systems can be de-
scribed in a reliable fashion by stochastic evolutions, like
Langevin or Monte Carlo dynamics, which work at
length scales that are intermediate between molecular
and macroscopic. It is therefore natural to ask for the
prediction of stochastic dynamics in the case of spread-
ing. This is the motivation of the present paper, where
we consider a stochastic approach of spreading, with par-
ticular attention to entropic repulsion effects. A suitable
model for this study is the columnar solid-on-solid (SOS)
model, where the variables describe the height of the in-
terface above the substrate. A self-avoiding-walk model
has been studied recently [7] in the same spirit, with valu-
able results, but the SOS model is easier to handle, both
exactly and numerically, which allows us to give more
precise results. Previous work [8—10] used ‘“parallel”
SOS models, where the variables describe layers parallel
to the substrate. This had the advantage of allowing
Langevin dynamics, but could not take into account the
entropic repulsion associated with an inpene-
trable substrate.

We consider a macroscopic droplet on a wall in a sys-
tem of two phases 4 and B, which are at equilibrium in
the bulk. The main object of our study is the time behav-
ior of the foot of the drop, which we take initially as a
wedge of length /; and height A, as reproduced in Fig. 1.
This length /; has to be taken large (going to infinity in
the thermodynamic limit), but much smaller than the size
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of the macroscopic drop; we then study the time evolu-
tion up to ¢ less than /3. The interface at time ¢ is de-
scribed by heights hg,hq, ... ,h,tEN, with h; 21 for
i—0,...,l,and h;=0for j>1I,.

The model is the restricted-solid-on-solid (RSOS) mod-
el with h; , ,—h;€{—1,0,1} and the Hamiltonian:

1—1
H(ho, “ e ,h1)= 2 J[|hl+l_hl|+1]+I(UBW——UAW) 5
i=0

(1

where o gy —0 4y represents the difference of wall free
energies, and / is a random variable that measures the
spreading of the drop. These wall free energies incorpo-
rate a contact potential at the wall and can be computed
exactly in some model cases [11]. The coefficient J is the
energy per unit length of the 4-B interface. The bound-
ary condition is fixed by hA,=const. The corresponding

ho\

N

h; height of spreading phase

Position i on substrate

FIG. 1. Wedge of height 4, and length /, and example of
SOS profile of length /,.
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equilibrium partition function is
+ o0

Z(ho)= 3
I=0(hy,..., 1}

—BH(h,, ..., h
¢ B0k 2)

A significant feature of the model is that the equilibri-
um mean value of / and all its subsequent moments can
be exactly computed for any choice of h,. Finite-size
effects can thus be exactly computed, which is important
for appropriate analysis of relaxation. The computation
goes as follows. For hy=1, we find, in the spirit of Ref.
[12], that Z (1) satisfies

2
Z(1)= ac +acZ(1) ’ 3)
1—c¢ 1—e¢
where
a=e I/

_ ~U+ogy =0 )/kT

The first term of (3) is the contribution of interfaces
with h; =1 for all i. The mean value and variance of / are
then obtained by

_3dlnz() _ 1
= dlInc [(1—c)*—4a2c?]'/2’ @
dInZ (1)
P2y — (D= 5
(1), — (D e 7 )

In general, h, will typically be large at the molecular
scale and small at the scale of the drop. We have exactly

Z(hy)=[Z(D]", ©)
and thus
ho
Dy =holI)\= T ooyt » %)
(12Yhg— (1) =ho ({12}, — (D)3} . (8)

The contact angle 0 of the drop with the substrate can be
defined by

0
tanf= lim ——— .
hy— (l>ho

In the present model, the above ratio happens to be in-
dependent of h, as is obvious from Eq. (7). The resulting
contact angle can be checked to verify Young’s equation
generalized to anisotropic media [13]

o 45(0)cos@—0"5(0)sin0=0 1 —0 gy ,

where o 45(0) is the interfacial tension of an 4-B inter-
face at angle 6, defined with the Hamiltonian (1) but in
the absence of a wall, and o',5(0) is the derivative of
o 45(0) with respect to 6. The term o', 5(60)sind is, of
course, identically zero for isotropic fluids, but cannot be
neglected in the interpretation of numerical work on lat-
tice models.

The above formulas give finite results only in the
partial-wetting regime, which is conveniently character-
ized by a negative spreading coefficient,

S=UAW_UBW_0'AB(0=O)<0 N (9)
where
o 45(0=0)=J—kT In(1+2¢ ~//*T) , (10)
As s —0, we get
1—c +4a% ho hy
1), ~=—= = =0 |——=, 1
¢ )h" l1—c V1—c+2ac V—s [\/—s an

2 _ 2.2 h
(1—c +4a“c) 0
(1), —(1)} ===
ko ¢ ho™ 1—c (1—c +2ac)3? (—s)3?
ho

(——s—)?/? (12)

To study the relaxation to equilibrium, we have con-
sidered the Monte Carlo (MC) dynamics associated with
the model. The corresponding stochastic process is er-
godic and satisfies detailed balance. We have chosen the
RSOS (h; . ,—h;€{—1,0,1}) rather than the SOS model
in order to satisfy conveniently this detailed-balance con-
dition. We recall that these conditions imply conver-
gence to equilibrium. We have indeed checked that the
time averages of /, and I? converge to the equilibrium
values (! )ho and (! 2),,0 computed above. The relaxation

time 7 is of order /2, which thus requires /3> MC steps. As
the wetting transition is approached (s—0), the corre-
sponding slowing down can be estimated by

(I3 =(1)¥(—s) " 1=(—5)7572,

We also obtain mean profiles, which cannot be computed
exactly, as represented in Fig. 2, where the effect of entro-
pic repulsion is clear. The curvature of the mean profile
near the substrate can indeed only come from entropic
repulsion, because we only have a contact interaction
with the wall. In more complicated models, entropic
repulsion is buried with other interactions.

Let us now consider the complete wetting regime with
s>0 or s=0, for which the drop will spread out
indefinitely. We are in this case interested in the shape of
the spreading edge and precursor films (s >0). We use

Mean height <h,>
£
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FIG. 2. Equilibrium profile for partial wetting showing the
entropic repulsion effect near the wall (J/kT =1, s=—0.1). 6
is the exact equilibrium contact angle.
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the same algorithm as before.

For s >0, analogous to ““dry spreading,” we get that /,
goes linearly with time, which is measured as the number
of MC steps per site. Let us stress that the dynamics con-
sidered here does not locally conserve the respective
volume of the two phases, and therefore a diffusive be-
havior is not to be expected. The speed as a function of
the spreading parameter s is represented in Fig. 3. We
have obtained this speed in two ways, with a good agree-
ment  between the two results: (a) Sg..q
=lim,_, ,(/,—1y)/t; (b) given that h’;“:O and h; =1,

the asymptotic speed is given analytically in terms of
(hlf—1> by

(1+2e_"/kT)(3—(h,[_1>)

s
1+2e 77K te

speed =1-
The maximum speed is one, because each update of the
profile can at most increase /, by 1.

The thickening of the precursor film can be described
as follows: the height h;(¢) at point i is proportional to
the one-fourth-power of the time elapsed since the pre-
cursor film reached at this point. This #!/* law yields a
profile h; ~(I,—i)!*. Figure 4 represents a log-log plot
of this profile.

This behavior can be understood by comparison to the
fluctuation of an interface in the absence of a wall: if we
would remove the restriction h; >0, the fluctuations
would be =~¢!/4 as shown explicitly in Langevin dynam-
ics [14,8]. The wall condition h; =0 causes entropic
repulsion of the same amplitude as the fluctuations that
the wall prevents.

The thickening of the precursor film is clearly related
to the growth of wetting layers, starting from a complete-
ly dry situation. The ¢!/# law for this case has been pre-
dicted by scaling arguments [15] and obtained from
Monte Carlo simulations [16—-19].

We now describe the foot of the profile, which makes a
smooth function between the drop and the precursor film.
We find that this foot scales as 772 in both directions, i.e.,

h (10+xt1/2)_h0(10 +xt1/2)
t1/2

—¢(x) ast— o ,

Speed
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FIG. 3. Speed as a function of the spreading parameter s.
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FIG. 4. Log-log plot of the height 4; of the precursor film (a)

vs the distance j=1, —i between the tip /, and the point i, with

j=1,...,100; (b) vs a scaled distance j'=100 (I,—i)/(l,—1,)

with j'=1,...,100. The dotted line represents straight lines of

slope % (J/kT=1, s =1.0, averages are taken with /, varying
from 6000 to 48 000).

which is in agreement with the analogous result for the
parallel SOS model with Langevin dynamics [8]. The ap-
proximation to ¢(x) obtained as time averages from the
MC simulations is shown in Fig. 5(a).

We expect ¢(x)=0 for x >const=1.7, but the finite
time averages approximate ¢(x) with an error decaying
only as ¢ 174, which is implied by the junction with the
precursor film.

The scale-invariant shape of the foot of the drop, asso-
ciated with ¢(x), indicates that the scaling arguments
developed in Ref. [8] in connection with Langevin dy-
namics should apply also to the present model. The dy-
namic shape obtained here (no asymptote) is, however,
physically more satisfactory than that obtained for the
parallel SOS model [¢(x)—0 as x—x]. Analogous
differences appear in the Winterbottom droplet equilibri-
um shapes for these two SOS models.

We now turn to s =0, which may be considered as
moist spreading. This case can indeed by obtained from
the previous case, s >0, by adding into the initial condi-
tion a monolayer covering the wall. Figure 6 shows
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FIG. 5. Scaling profiles ¢(x) obtained from time averages
from MC simulations with /, varying from 4000 to 6000 for
5=0.7 (a) and with 4 X 10° MC steps/site for s =0 (b).
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FIG. 6. [,/Vt for s=0 (t;n,=4X10° MC steps/site,
J/kT=1)

1,/V't as a function of ¢, where t is again the number of
MC steps per site. The curve indicates that a logarithmic
correction is very unlikely.

The foot of the profile scales as in the case where s > 0.
The approximation to the scaling function obtained from

the simulations with s =0 is reproduced in Fig. 5(b). The
scaling functions for s >0 and for s =0 appear to be very
similar; the difference can be accounted for by a sys-
tematic overestimate in the case s >0 due to the junction
with the precursor film of height ~¢!/4. This error de-
cays as ¢ '/4 and longer simulations should bring the
two curves together. Another significant feature is the
absence of an asymptote, which might have been taken as
a precursor film. Indeed, our simulations have given

h,oﬂ_ﬂ/j(t)EO for any t <4.10° MC steps /site .

This result confirms the absence of logarithmic correc-
tions to the V't behavior of the spreading length /, in the
case of moist spreading s =0.
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